Preparing a state with antiferromagnetic order in the Ising model

This notebook illustrates how to use Pulser to build a sequence for studying an antiferromagnetic state in an Ising-like model. It is based on 10.1103/PhysRevX.8.021070, where arrays of Rydberg atoms were programmed and whose correlations were studied.

We begin by importing some basic modules:

[1]:
import numpy as np
import matplotlib.pyplot as plt
import qutip

from pulser import Pulse, Sequence, Register
from pulser_simulation import QutipEmulator
from pulser.waveforms import RampWaveform
from pulser.devices import AnalogDevice

Waveforms

We are realizing the following program

AF Pulse Sequence

The pulse and the register are defined by the following parameters:

[2]:
# Parameters in rad/µs and ns
Omega_max = 2.0 * 2 * np.pi
U = Omega_max / 2.0

delta_0 = -6 * U
delta_f = 2 * U

t_rise = 252
t_fall = 500
t_sweep = (delta_f - delta_0) / (2 * np.pi * 10) * 1000

R_interatomic = AnalogDevice.rydberg_blockade_radius(U)

N_side = 3
reg = Register.square(N_side, R_interatomic, prefix="q")
print(f"Interatomic Radius is: {R_interatomic}µm.")
reg.draw()
Interatomic Radius is: 7.186760677748386µm.
../_images/tutorials_afm_prep_4_1.png

Creating my sequence

We compose our pulse with the following objects from Pulser:

[3]:
rise = Pulse.ConstantDetuning(
    RampWaveform(t_rise, 0.0, Omega_max), delta_0, 0.0
)
sweep = Pulse.ConstantAmplitude(
    Omega_max, RampWaveform(t_sweep, delta_0, delta_f), 0.0
)
fall = Pulse.ConstantDetuning(
    RampWaveform(t_fall, Omega_max, 0.0), delta_f, 0.0
)
[4]:
seq = Sequence(reg, AnalogDevice)
seq.declare_channel("ising", "rydberg_global")

seq.add(rise, "ising")
seq.add(sweep, "ising")
seq.add(fall, "ising")

seq.draw()
../_images/tutorials_afm_prep_8_0.png

Phase Diagram

The pulse sequence travels though the following path in the phase diagram of the system (the shaded area represents the antiferromagnetic phase):

[5]:
delta = []
omega = []
for x in seq._schedule["ising"]:
    if isinstance(x.type, Pulse):
        omega += list(x.type.amplitude.samples / U)
        delta += list(x.type.detuning.samples / U)

fig, ax = plt.subplots()
ax.grid(True, which="both")

ax.set_ylabel(r"$\hbar\delta(t)/U$", fontsize=16)
ax.set_xlabel(r"$\hbar\Omega(t)/U$", fontsize=16)
ax.set_xlim(0, 3)
ax.axhline(y=0, color="k")
ax.axvline(x=0, color="k")

y = np.arange(0.0, 6, 0.01)
x = 1.522 * (1 - 0.25 * (y - 2) ** 2)
ax.fill_between(x, y, alpha=0.4)

ax.plot(omega, delta, "red", lw=2)
plt.show()
../_images/tutorials_afm_prep_11_0.png

Simulation: Spin-Spin Correlation Function

We shall now evaluate the quality of the obtained state by calculating the spin-spin correlation function, defined as:

\[g^c(k,l)= \frac{1}{N_{k,l}}\sum_{(i,j) = (kR,lR)} \left[ \langle n_i n_j \rangle - \langle n_i \rangle \langle n_j \rangle \right]\]

where the \(c\) indicates that we are calculating the connected part, and where the sum is over all pairs \((i,j)\) whose distance is \({\bf r}_i - {\bf r}_j = (k R,l R)\) in the atomic array coordinate (both \(k\) and \(l\) are positive or negative integers within the size of the array).

We run a simulation of the sequence:

[6]:
simul = QutipEmulator.from_sequence(seq, sampling_rate=0.02)
results = simul.run(progress_bar=True)
12.9%. Run time:   0.01s. Est. time left: 00:00:00:00
22.6%. Run time:   0.02s. Est. time left: 00:00:00:00
32.3%. Run time:   0.03s. Est. time left: 00:00:00:00
41.9%. Run time:   0.04s. Est. time left: 00:00:00:00
51.6%. Run time:   0.06s. Est. time left: 00:00:00:00
61.3%. Run time:   0.07s. Est. time left: 00:00:00:00
71.0%. Run time:   0.09s. Est. time left: 00:00:00:00
80.6%. Run time:   0.10s. Est. time left: 00:00:00:00
90.3%. Run time:   0.12s. Est. time left: 00:00:00:00
Total run time:   0.13s

Sample from final state using sample_final_state() method:

[7]:
count = results.sample_final_state()

most_freq = {k: v for k, v in count.items() if v > 10}
plt.bar(list(most_freq.keys()), list(most_freq.values()))
plt.xticks(rotation="vertical")
plt.show()
../_images/tutorials_afm_prep_16_0.png

The observable to measure will be the occupation operator \(|r\rangle \langle r|_i\) on each site \(i\) of the register, where the Rydberg state \(|r\rangle\) represents the excited state.

[8]:
def occupation(j, N):
    up = qutip.basis(2, 0)
    prod = [qutip.qeye(2) for _ in range(N)]
    prod[j] = up * up.dag()
    return qutip.tensor(prod)
[9]:
occup_list = [occupation(j, N_side * N_side) for j in range(N_side * N_side)]

We define a function that returns all couples \((i,j)\) for a given \((k,l)\):

[10]:
def get_corr_pairs(k, l, register, R_interatomic):
    corr_pairs = []
    for i, qi in enumerate(register.qubits):
        for j, qj in enumerate(register.qubits):
            r_ij = register.qubits[qi] - register.qubits[qj]
            distance = np.linalg.norm(r_ij - R_interatomic * np.array([k, l]))
            if distance < 1:
                corr_pairs.append([i, j])
    return corr_pairs

The correlation function is calculated with the following routines:

[11]:
def get_corr_function(k, l, reg, R_interatomic, state):
    N_qubits = len(reg.qubits)
    corr_pairs = get_corr_pairs(k, l, reg, R_interatomic)

    operators = [occupation(j, N_qubits) for j in range(N_qubits)]
    covariance = 0
    for qi, qj in corr_pairs:
        covariance += qutip.expect(operators[qi] * operators[qj], state)
        covariance -= qutip.expect(operators[qi], state) * qutip.expect(
            operators[qj], state
        )
    return covariance / len(corr_pairs)


def get_full_corr_function(reg, state):
    N_qubits = len(reg.qubits)

    correlation_function = {}
    N_side = int(np.sqrt(N_qubits))
    for k in range(-N_side + 1, N_side):
        for l in range(-N_side + 1, N_side):
            correlation_function[(k, l)] = get_corr_function(
                k, l, reg, R_interatomic, state
            )
    return correlation_function

With these functions, we operate on the final state of evolution obtained by our simulation.

[12]:
final = results.states[-1]
correlation_function = get_full_corr_function(reg, final)
[13]:
expected_corr_function = {}
xi = 1  # Estimated Correlation Length
for k in range(-N_side + 1, N_side):
    for l in range(-N_side + 1, N_side):
        kk = np.abs(k)
        ll = np.abs(l)
        expected_corr_function[(k, l)] = (-1) ** (kk + ll) * np.exp(
            -np.sqrt(k**2 + l**2) / xi
        )
[14]:
A = 4 * np.reshape(
    list(correlation_function.values()), (2 * N_side - 1, 2 * N_side - 1)
)
A = A / np.max(A)
B = np.reshape(
    list(expected_corr_function.values()), (2 * N_side - 1, 2 * N_side - 1)
)
B = B * np.max(A)

for i, M in enumerate([A.copy(), B.copy()]):
    M[N_side - 1, N_side - 1] = None
    plt.figure(figsize=(3.5, 3.5))
    plt.imshow(M, cmap="coolwarm", vmin=-0.6, vmax=0.6)
    plt.xticks(range(len(M)), [f"{x}" for x in range(-N_side + 1, N_side)])
    plt.xlabel(r"$\mathscr{k}$", fontsize=22)
    plt.yticks(range(len(M)), [f"{-y}" for y in range(-N_side + 1, N_side)])
    plt.ylabel(r"$\mathscr{l}$", rotation=0, fontsize=22, labelpad=10)
    plt.colorbar(fraction=0.047, pad=0.02)
    if i == 0:
        plt.title(
            r"$4\times\.g^{(2)}(\mathscr{k},\mathscr{l})$ after simulation",
            fontsize=14,
        )
    if i == 1:
        plt.title(
            r"Exponential $g^{(2)}(\mathscr{k},\mathscr{l})$ expected",
            fontsize=14,
        )
    plt.show()
../_images/tutorials_afm_prep_27_0.png
../_images/tutorials_afm_prep_27_1.png

Note that the correlation function would follow an exponential decay (modulo finite-size effects), which is best observed at larger system sizes (see for example https://arxiv.org/pdf/2012.12268.pdf)

[15]:
np.around(A, 4)
[15]:
array([[-0.0039, -0.0385,  0.0866, -0.0385, -0.0039],
       [-0.0385,  0.1654, -0.345 ,  0.1654, -0.0385],
       [ 0.0866, -0.345 ,  1.    , -0.345 ,  0.0866],
       [-0.0385,  0.1654, -0.345 ,  0.1654, -0.0385],
       [-0.0039, -0.0385,  0.0866, -0.0385, -0.0039]])
[16]:
np.around(B, 4)
[16]:
array([[ 0.0591, -0.1069,  0.1353, -0.1069,  0.0591],
       [-0.1069,  0.2431, -0.3679,  0.2431, -0.1069],
       [ 0.1353, -0.3679,  1.    , -0.3679,  0.1353],
       [-0.1069,  0.2431, -0.3679,  0.2431, -0.1069],
       [ 0.0591, -0.1069,  0.1353, -0.1069,  0.0591]])

Néel Structure Factor

One way to explore the \(\Omega = 0\) line on the phase diagram is to calculate the Néel Structure Factor, \(S_{\text{Néel}}=4 \times \sum_{(k,l) \neq (0,0)} (-1)^{|k|+|l|} g^c(k,l)\), which should be highest when the state is more antiferromagnetic. We will sweep over different values of \(\delta_{\text{final}}\) to show that the region \(0<\hbar \delta_{\text{final}}/U<4\) is indeed where the antiferromagnetic phase takes place.

[17]:
def get_neel_structure_factor(reg, R_interatomic, state):
    N_qubits = len(reg.qubits)
    N_side = int(np.sqrt(N_qubits))

    st_fac = 0
    for k in range(-N_side + 1, N_side):
        for l in range(-N_side + 1, N_side):
            kk = np.abs(k)
            ll = np.abs(l)
            if not (k == 0 and l == 0):
                st_fac += (
                    4
                    * (-1) ** (kk + ll)
                    * get_corr_function(k, l, reg, R_interatomic, state)
                )
    return st_fac
[18]:
def calculate_neel(det, N, Omega_max=2.0 * 2 * np.pi):
    # Setup:
    U = Omega_max / 2.0
    delta_0 = -6 * U
    delta_f = det * U

    t_rise = 252
    t_fall = 500
    t_sweep = int((delta_f - delta_0) / (2 * np.pi * 10) * 1000)
    t_sweep += (
        4 - t_sweep % 4
    )  # To be a multiple of the clock period of AnalogDevice (4ns)

    R_interatomic = AnalogDevice.rydberg_blockade_radius(U)
    reg = Register.rectangle(N, N, R_interatomic)

    # Pulse Sequence
    rise = Pulse.ConstantDetuning(
        RampWaveform(t_rise, 0.0, Omega_max), delta_0, 0.0
    )
    sweep = Pulse.ConstantAmplitude(
        Omega_max, RampWaveform(t_sweep, delta_0, delta_f), 0.0
    )
    fall = Pulse.ConstantDetuning(
        RampWaveform(t_fall, Omega_max, 0.0), delta_f, 0.0
    )

    seq = Sequence(reg, AnalogDevice)
    seq.declare_channel("ising", "rydberg_global")
    seq.add(rise, "ising")
    seq.add(sweep, "ising")
    seq.add(fall, "ising")

    simul = QutipEmulator.from_sequence(seq, sampling_rate=0.2)
    results = simul.run()

    final = results.states[-1]
    return get_neel_structure_factor(reg, R_interatomic, final)
[19]:
N_side = 3
occup_list = [occupation(j, N_side * N_side) for j in range(N_side * N_side)]

detunings = np.linspace(-1, 5, 20)
results = []
for det in detunings:
    print(f"Detuning = {np.round(det,3)} x 2π Mhz.")
    results.append(calculate_neel(det, N_side))
plt.xlabel(r"$\hbar\delta_{final}/U$")
plt.ylabel(r"Néel Structure Factor $S_{Neel}$")
plt.plot(detunings, results, "o", ls="solid")
plt.show()
max_index = results.index(max(results))
print(
    f"Max S_Neel {np.round(max(results),2)} at detuning = {np.round(detunings[max_index],2)} x 2π Mhz."
)
Detuning = -1.0 x 2π Mhz.
Detuning = -0.684 x 2π Mhz.
Detuning = -0.368 x 2π Mhz.
Detuning = -0.053 x 2π Mhz.
Detuning = 0.263 x 2π Mhz.
Detuning = 0.579 x 2π Mhz.
Detuning = 0.895 x 2π Mhz.
Detuning = 1.211 x 2π Mhz.
Detuning = 1.526 x 2π Mhz.
Detuning = 1.842 x 2π Mhz.
Detuning = 2.158 x 2π Mhz.
Detuning = 2.474 x 2π Mhz.
Detuning = 2.789 x 2π Mhz.
Detuning = 3.105 x 2π Mhz.
Detuning = 3.421 x 2π Mhz.
Detuning = 3.737 x 2π Mhz.
Detuning = 4.053 x 2π Mhz.
Detuning = 4.368 x 2π Mhz.
Detuning = 4.684 x 2π Mhz.
Detuning = 5.0 x 2π Mhz.
../_images/tutorials_afm_prep_35_1.png
Max S_Neel 2.32 at detuning = 2.47 x 2π Mhz.